Computing Patient Similarity Based on Unstructured Clinical Notes

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

ZELINA Petr ŘEHÁČEK Marko HALÁMKOVÁ Jana BOHOVICOVÁ Lucia RUSINKO Martin NOVÁČEK Vít

Rok publikování 2025
Druh Článek v odborném periodiku
Časopis / Zdroj LECTURE NOTES IN COMPUTER SCIENCE
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www
Doi https://doi.org/10.1007/978-3-032-02551-7_13
Klíčová slova EHR mining; machine learning; NLP; patient similarity
Popis Clinical notes hold rich yet unstructured details about diagnoses, treatments, and outcomes that are vital to precision medicine but hard to exploit at scale. We introduce a method that represents each patient as a matrix built from aggregated embeddings of all their notes, enabling robust patient similarity computation based on their latent low-rank representations. Using clinical notes of 4,267 Czech breast-cancer patients and expert similarity labels from Masaryk Memorial Cancer Institute, we evaluate several matrix-based similarity measures and analyze their strengths and limitations across different similarity facets, such as clinical history, treatment, and adverse events. The results demonstrate the usefulness of the presented method for downstream tasks, such as personalized therapy recommendations or toxicity warnings.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info