On the Costs and Benefits of Learned Indexing for Dynamic High-Dimensional Data

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

SLANINÁKOVÁ Terézia OĽHA Jaroslav PROCHÁZKA David ANTOL Matej DOHNAL Vlastislav

Rok publikování 2025
Druh Článek ve sborníku
Konference Big Data Analytics and Knowledge Discovery 27th International Conference, DaWaK 2025, Bangkok, Thailand, August 25–27, 2025, Proceedings
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://link.springer.com/chapter/10.1007/978-3-032-02215-8_20
Doi http://dx.doi.org/10.1007/978-3-032-02215-8_20
Klíčová slova Learned indexing; Dynamization; Dynamic datasets; kNN search ; ANN search
Popis One of the main challenges within the growing research area of learned indexing is the lack of adaptability to dynamically expanding datasets . This paper explores the dynamization of a static learned index for complex data through operations such as node splitting and broadening, enabling efficient adaptation to new data. Furthermore, we evaluate the trade-offs between static and dynamic approaches by introducing an amortized cost model to assess query performance in tandem with the build costs of the index structure, enabling experimental determination of when a dynamic learned index outperforms its static counterpart. We apply the dynamization method to a static learned index and demonstrate that its superior scaling quickly surpasses the static implementation in terms of overall costs as the database grows.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info