DeepFuse: A multi-rater fusion and refinement network for computing silver-standard annotations

Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

AKBAS Cem Emre ULMAN Vladimír MAŠKA Martin KOZUBEK Michal

Rok publikování 2025
Druh Článek v odborném periodiku
Časopis / Zdroj Computers in Biology and Medicine
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://www.sciencedirect.com/science/article/abs/pii/S0010482525005372
Doi http://dx.doi.org/10.1016/j.compbiomed.2025.110186
Klíčová slova deep learning; convolutional neural networks; label fusion; silver-standard annotations; computer vision
Popis Achieving a reliable and accurate biomedical image segmentation is a long-standing problem. In order to train or adapt the segmentation methods or measure their performance, reference segmentation masks are required. Usually gold-standard annotations, i.e. human-origin reference annotations, are used as reference although they are very hard to obtain. The increasing size of the acquired image data, large dimensionality such as 3D or 3D + time, limited human expert time, and annotator variability, typically result in sparsely annotated gold-standard datasets. Reliable silver-standard annotations, i.e. computer-origin reference annotations, are needed to provide dense segmentation annotations by fusing multiple computer-origin segmentation results. The produced dense silver-standard annotations can then be either used as reference annotations directly, or converted into gold-standard ones with much lighter manual curation, which saves experts’ time significantly. We propose a novel full-resolution multi-rater fusion convolutional neural network (CNN) architecture for biomedical image segmentation masks, called DeepFuse, which lacks any down-sampling layers. Staying everywhere at the full resolution enables DeepFuse to fully benefit from the enormous feature extraction capabilities of CNNs. DeepFuse outperforms the popular and commonly used fusion methods, STAPLE, SIMPLE and other majority-voting-based approaches with statistical significance on a wide range of benchmark datasets as demonstrated on examples of a challenging task of 2D and 3D cell and cell nuclei instance segmentation for a wide range of microscopy modalities, magnifications, cell shapes and densities. A remarkable feature of the proposed method is that it can apply specialized post-processing to the segmentation masks of each rater separately and recover under-segmented object parts during the refinement phase even if the majority of inputs vote otherwise. Thus, DeepFuse takes a big step towards obtaining fast and reliable computer-origin segmentation annotations for biomedical images.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info