Image Harmonization Using Robust Restricted Cdf Matching

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

STOKLASA Roman

Rok publikování 2025
Druh Článek ve sborníku
Konference 2025 IEEE International Symposium on Biomedical Imaging
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Klíčová slova harmonization; normalization; CDF; histogram matching; federated learning; FL; MRI; brain; tumor
Popis Deployment of machine learning algorithms into real-world practice is still a difficult task. One of the challenges lies in the unpredictable variability of input data, which may differ significantly among individual users, institutions, scanners, etc. The input data variability can be decreased by using suitable data preprocessing with robust data harmonization. In this paper, we present a method of image harmonization using Cumulative Distribution Function (CDF) matching based on curve fitting. This approach does not ruin local variability and individual important features. The transformation of image intensities is non-linear but still “smooth and elastic”, as compared to other known histogram matching algorithms. Nonlinear transformation allows for a very good match to the template. At the same time, elasticity constraints help to preserve local variability among individual inputs, which may encode important features for subsequent machine-learning processing. The pre-defined template CDF offers a better and more intuitive control for the input data transformation compared to other methods, especially ML-based ones. Even though we demonstrate our method for MRI images, the method is generic enough to apply to other types of imaging data.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info