PSEUDO-RIEMANNIAN AND HESSIAN GEOMETRY RELATED TO MONGE-AMPERE STRUCTURES
| Autoři | |
|---|---|
| Rok publikování | 2022 |
| Druh | Článek v odborném periodiku |
| Časopis / Zdroj | Archivum Mathematicum |
| Fakulta / Pracoviště MU | |
| Citace | |
| www | http://dx.doi.org/10.5817/AM2022-5-329 |
| Doi | https://doi.org/10.5817/AM2022-5-329 |
| Klíčová slova | Hessian structure; Lychagin-Rubtsov metric; Monge-Ampere structure; Monge-Ampere equation; Plucker embedding |
| Popis | We study properties of pseudo-Riemannian metrics corresponding to Monge-Ampere structures on four dimensional $T^*M$. We describe a family of Ricci flat solutions, which are parametrized by six coefficients satisfying the Plücker embedding equation. We also focus on pullbacks of the pseudo-metrics on two dimensional $M$, and describe the corresponding Hessian structures. |
| Související projekty: |