Friedrichs extension of operators defined by even order Sturm-Liouville equations on time scales
| Autoři | |
|---|---|
| Rok publikování | 2012 |
| Druh | Článek v odborném periodiku |
| Časopis / Zdroj | Applied Mathematics and Computation |
| Fakulta / Pracoviště MU | |
| Citace | |
| Doi | https://doi.org/10.1016/j.amc.2012.04.027 |
| Obor | Obecná matematika |
| Klíčová slova | Time scale; even order Sturm-Liouville dynamic equation; Friedrichs extension; self-adjoint operator; time reversed symplectic system; recessive solution; quadratic functional |
| Přiložené soubory | |
| Popis | In this paper we characterize the Friedrichs extension of operators associated with the 2n-th order Sturm-Liouville dynamic equations on time scales with using the time reversed symplectic systems and its recessive system of solutions. A nontrivial example is also provided. |
| Související projekty: |