Analysis of Input-Output Mappings in Coinjoin Transactions with Arbitrary Values

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

GAVENDA Jiří ŠVENDA Petr BOBOŇ Stanislav SEDLÁČEK Vladimír

Rok publikování 2025
Druh Článek ve sborníku
Konference Computer Security – ESORICS 2025
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://link.springer.com/chapter/10.1007/978-3-032-07901-5_7
Doi https://doi.org/10.1007/978-3-032-07901-5_7
Klíčová slova Bitcoin; CoinJoin; Privacy; Anonymity
Popis A coinjoin protocol aims to increase transactional privacy for Bitcoin and Bitcoin-like blockchains via collaborative transactions, by violating assumptions behind common analysis heuristics. Estimating the resulting privacy gain is a crucial yet unsolved problem due to a range of influencing factors and large computational complexity. We adapt the BlockSci on-chain analysis software to coinjoin transactions, demonstrating a significant (10–50%) average post-mix anonymity set size decrease for all three major designs with a central coordinator: Whirlpool, Wasabi 1.x, and Wasabi 2.x. The decrease is highest during the first day and negligible after one year from a coinjoin creation. Moreover, we design a precise, parallelizable privacy estimation method, which takes into account coinjoin fees, implementation-specific limitations and users’ post-mix behavior. We evaluate our method in detail on a set of emulated and real-world Wasabi 2.x coinjoins and extrapolate to its largest real-world coinjoins with hundreds of inputs and outputs. We conclude that despite the users’ undesirable post-mix behavior, correctly attributing the coins to their owners is still very difficult, even with our improved analysis algorithm.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info