Enhanced Risk Management: Integrating Fuzzy Logic and EWMA Model for Market Volatility

Logo poskytovatele

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Ekonomicko-správní fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

IQBAL Shafqat LIU Xiufeng PIRACHA Sajawal

Rok publikování 2025
Druh Článek ve sborníku
Konference Lecture Notes in Networks and Systems
Fakulta / Pracoviště MU

Ekonomicko-správní fakulta

Citace
www https://link.springer.com/chapter/10.1007/978-3-031-97992-7_84
Doi https://doi.org/10.1007/978-3-031-97992-7_84
Klíčová slova Market Risk · Volatility Forecasting · EWMA · Fuzzy Theory · Clustering.
Přiložené soubory
Popis In the financial markets, volatility is vital for hedging, assets risk management, and the derivatives pricing. Consequently, it is essential to forecast markets volatility accurately. The standard exponential weighted moving average (EWMA) model tracks market shift in conditional variance of returns by prioritizing the recent observations and decreasing weights exponentially to the past returns. We propose a new fuzzy based FEWMA model that integrates fuzzy logic systems, k-means clustering and EWMA model to forecast market volatility more accurately by assigning weights to returns on the basis of fuzzy logical relationships and rules. The proposed model’s performance is compared to that of the classic GARCH, EWMA, and different modified versions of EWMA models in terms of statistical accuracy measures. This research aims to introduce fuzzy theory in RiskMetrics modeling scheme which adopts nonlinear structure to assign suitable weights to past returns. Furthermore, proposed FEWMA model’s structure combines an effective fuzzy logical control system and pattern learning in k-means clustering environment to forecast volatility with higher accuracy.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info