Categories of Orthosets and Adjointable Maps
Autoři | |
---|---|
Rok publikování | 2025 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | International Journal of Theoretical Physics |
Fakulta / Pracoviště MU | |
Citace | |
www | https://link.springer.com/article/10.1007/s10773-025-06031-4 |
Doi | https://doi.org/10.1007/s10773-025-06031-4 |
Klíčová slova | Orthoset; Orthogonality space; Hermitian space; Hilbert space; Dagger category |
Přiložené soubory | |
Popis | An orthoset is a non-empty set together with a symmetric and irreflexive binary relation \perp, called the orthogonality relation. An orthoset with 0 is an orthoset augmented with an additional element 0, called falsity, which is orthogonal to every element. The collection of subspaces of a Hilbert space that are spanned by a single vector provides a motivating example. We say that a map f :X \rightarrow Y between orthosets with 0 possesses the adjoint g :Y \rightarrow X if, for any x \in X and y \in Y, f(x) \perp y if and only if x \perp g(y). We call f in this case adjointable. For instance, any bounded linear map between Hilbert spaces induces a map with this property. We discuss in this paper adjointability from several perspectives and we put a particular focus on maps preserving the orthogonality relation. We moreover investigate the category \mathcal{O}\mathcal{S} of all orthosets with 0 and adjointable maps between them. We especially focus on the full subcategory \mathcalligra {i}\mathcal{O}\mathcal{S} of irredundant orthosets with 0. \mathcalligra {i}\mathcal{O}\mathcal{S}can be made into a dagger category, the dagger of a morphism being its unique adjoint. \mathcalligra {i}\mathcal{O}\mathcal{S} contains dagger subcategories of various sorts and provides in particular a framework for the investigation of Hilbert spaces. |
Související projekty: |