Categories of Orthosets and Adjointable Maps

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

PASEKA Jan VETTERLEIN Thomas

Rok publikování 2025
Druh Článek v odborném periodiku
Časopis / Zdroj International Journal of Theoretical Physics
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://link.springer.com/article/10.1007/s10773-025-06031-4
Doi https://doi.org/10.1007/s10773-025-06031-4
Klíčová slova Orthoset; Orthogonality space; Hermitian space; Hilbert space; Dagger category
Přiložené soubory
Popis An orthoset is a non-empty set together with a symmetric and irreflexive binary relation \perp, called the orthogonality relation. An orthoset with 0 is an orthoset augmented with an additional element 0, called falsity, which is orthogonal to every element. The collection of subspaces of a Hilbert space that are spanned by a single vector provides a motivating example. We say that a map f :X \rightarrow Y between orthosets with 0 possesses the adjoint g :Y \rightarrow X if, for any x \in X and y \in Y, f(x) \perp y if and only if x \perp g(y). We call f in this case adjointable. For instance, any bounded linear map between Hilbert spaces induces a map with this property. We discuss in this paper adjointability from several perspectives and we put a particular focus on maps preserving the orthogonality relation. We moreover investigate the category \mathcal{O}\mathcal{S} of all orthosets with 0 and adjointable maps between them. We especially focus on the full subcategory \mathcalligra {i}\mathcal{O}\mathcal{S} of irredundant orthosets with 0. \mathcalligra {i}\mathcal{O}\mathcal{S}can be made into a dagger category, the dagger of a morphism being its unique adjoint. \mathcalligra {i}\mathcal{O}\mathcal{S} contains dagger subcategories of various sorts and provides in particular a framework for the investigation of Hilbert spaces.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info