Solving Partial Dominating Set and Related Problems Using Twin-Width

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

BALABÁN Jakub MOCK Daniel ROSSMANITH Peter

Rok publikování 2025
Druh Článek ve sborníku
Konference 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Klíčová slova Partial Dominating Set; Partial Vertex Cover; meta-algorithm; counting logic; twin-width
Popis Partial vertex cover and partial dominating set are two well-investigated optimization problems. While they are $\rm W[1]$-hard on general graphs, they have been shown to be fixed-parameter tractable on many sparse graph classes, including nowhere-dense classes. In this paper, we demonstrate that these problems are also fixed-parameter tractable with respect to the twin-width of a graph. Indeed, we establish a more general result: every graph property that can be expressed by a logical formula of the form \phi\equiv\exists x_1\cdots \exists x_k \sum_{i\in I} \#y\,\psi_i(x_1,\ldots,x_k,y)\ge t$, where $\psi_i$ is a quantifier-free formula for each $i \in I$, $t$ is an arbitrary number, and $\#y$ is a counting quantifier, can be evaluated in time $f(d,k)n$, where $n$ is the number of vertices and $d$ is the width of a contraction sequence that is part of the input. In addition to the aforementioned problems, this includes also connected partial dominating set and independent partial dominating set.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info