Evaluating Prompt-Based and Fine-Tuned Approaches to Czech Anaphora Resolution

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Název česky Evaluace Prompt-Based a Fine-Tuned metod řešení anafor na českém textu
Autoři

STANO Patrik HORÁK Aleš

Rok publikování 2025
Druh Článek ve sborníku
Konference Text, Speech, and Dialogue, TSD 2025
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Klíčová slova anaphora resolution; sequence-to-sequence models; fine-tuning; prompt engineering
Popis Anaphora resolution plays a critical role in natural language understanding, especially in morphologically rich languages like Czech. This paper presents a comparative evaluation of two modern approaches to anaphora resolution on Czech text: prompt engineering with large language models (LLMs) and fine-tuning compact generative models. Using a dataset derived from the Prague Dependency Treebank, we evaluate several instruction-tuned LLMs, including Mistral Large 2 and Llama 3, using a series of prompt templates. We compare them against fine-tuned variants of the mT5 and Mistral models that we trained specifically for Czech anaphora resolution. Our experiments demonstrate that while prompting yields promising few-shot results (up to 74.5\% accuracy), the fine-tuned models, particularly mT5-large, outperform them significantly, achieving up to 88\% accuracy while requiring fewer computational resources. We analyze performance across different anaphora types, antecedent distances, and source corpora, highlighting key strengths and trade-offs of each approach.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info