The Friedrichs extension of a class of discrete symplectic systems
| Autoři | |
|---|---|
| Rok publikování | 2025 |
| Druh | Článek v odborném periodiku |
| Časopis / Zdroj | Journal of Spectral Theory |
| Fakulta / Pracoviště MU | |
| Citace | |
| www | https://doi.org/10.4171/jst/541 |
| Doi | https://doi.org/10.4171/JST/541 |
| Klíčová slova | discrete symplectic system; Friedrichs extension; minimal linear relation; recessive solution |
| Popis | The Friedrichs extension of minimal linear relation being bounded below and associated with the discrete symplectic system with a special linear dependence on the spectral parameter is characterized by using recessive solutions. This generalizes a similar result obtained by Došlý and Hasil for linear operators defined by infinite banded matrices corresponding to even-order Sturm–Liouville difference equations and, in a certain sense, also results of Marletta and Zettl or Šimon Hilscher and Zemánek for singular differential operators. |
| Související projekty: |