Shedding light on the black box of a neural network used to detect prostate cancer in whole slide images by occlusion-based explainability
| Autoři | |
|---|---|
| Rok publikování | 2023 |
| Druh | Článek v odborném periodiku |
| Časopis / Zdroj | NEW BIOTECHNOLOGY |
| Fakulta / Pracoviště MU | |
| Citace | |
| www | https://www.sciencedirect.com/science/article/pii/S1871678423000511 |
| Doi | https://doi.org/10.1016/j.nbt.2023.09.008 |
| Klíčová slova | Artificial intelligence; Digital histopathology; Explainable AI; Machine learning; Occlusion sensitivity analysis; Prostate cancer |
| Popis | • Saliency maps identified histomorphological features characterizing cancer. • VGG16 model utilized all the structures that are observable by the pathologist. • The method can identify standard patterns not used by the model. • The method can also identify new patterns not yet used by human pathologists. |
| Související projekty: |
|