Adjoint functor theorems for homotopically enriched categories
| Autoři | |
|---|---|
| Rok publikování | 2023 |
| Druh | Článek v odborném periodiku |
| Časopis / Zdroj | Advances in Mathematics |
| Fakulta / Pracoviště MU | |
| Citace | |
| www | Link to article at journal |
| Doi | https://doi.org/10.1016/j.aim.2022.108812 |
| Klíčová slova | Adjoint functor theorem; Enriched category; Homotopy theory |
| Přiložené soubory | |
| Popis | We prove an adjoint functor theorem in the setting of categories enriched in a monoidal model category admitting certain limits. When is equipped with the trivial model structure this recaptures the enriched version of Freyd's adjoint functor theorem. For non-trivial model structures, we obtain new adjoint functor theorems of a homotopical flavour — in particular, when is the category of simplicial sets we obtain a homotopical adjoint functor theorem appropriate to the ?-cosmoi of Riehl and Verity. We also investigate accessibility in the enriched setting, in particular obtaining homotopical cocompleteness results for accessible ?-cosmoi. |
| Související projekty: |