A Hybrid Machine Learning Model for Intrusion Detection in VANET

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.

Autoři

BANGUI Hind GE Mouzhi BÜHNOVÁ Barbora

Rok publikování 2021
Druh Článek v odborném periodiku
Časopis / Zdroj Computing
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://doi.org/10.1007/s00607-021-01001-0
Doi http://dx.doi.org/10.1007/s00607-021-01001-0
Klíčová slova Machine learning; VANET; Security; Intrusion; Clustering; Classification; Coresets; Random Forest
Popis While Vehicular Ad-hoc Network (VANET) is developed to enable effective vehicle communication and traffic information exchange, VANET is also vulnerable to different security attacks, such as DOS attacks. The usage of an intrusion detection system (IDS) is one possible solution for preventing attacks in VANET. However, dealing with a large amount of vehicular data that keep growing in the urban environment is still a critical challenge for IDSs. This paper, therefore, proposes a new machine learning model to improve the performance of IDSs by using Random Forest and a posterior detection based on coresets to improve the detection accuracy and increase detection efficiency. The experimental results show that the proposed machine learning model can significantly enhance the detection accuracy compared to classical application of machine learning models.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info