Eigenfunctions expansion for discrete symplectic systems with general linear dependence on spectral parameter
| Autoři | |
|---|---|
| Rok publikování | 2021 | 
| Druh | Článek v odborném periodiku | 
| Časopis / Zdroj | Journal of Mathematical Analysis and Applications | 
| Fakulta / Pracoviště MU | |
| Citace | |
| www | https://doi.org/10.1016/j.jmaa.2021.125054 | 
| Doi | https://doi.org/10.1016/j.jmaa.2021.125054 | 
| Klíčová slova | Discrete symplectic system; Eigenvalue; Eigenfunction; Expansion theorem; M(lambda)-function | 
| Popis | Eigenfunctions expansion for discrete symplectic systems on a finite discrete interval is established in the case of a general linear dependence on the spectral parameter as a significant generalization of the Expansion theorem given by Bohner et al. (2009) [14]. Subsequently, an integral representation of the Weyl-Titchmarsh M(lambda)-function is derived explicitly by using a suitable spectral function and a possible extension to the half-line case is discussed. The main results are illustrated by several examples. | 
| Související projekty: |