Accessible aspects of 2-category theory
| Autoři | |
|---|---|
| Rok publikování | 2021 |
| Druh | Článek v odborném periodiku |
| Časopis / Zdroj | Journal of Pure and Applied Algebra |
| Fakulta / Pracoviště MU | |
| Citace | |
| www | https://doi.org/10.1016/j.jpaa.2020.106519 |
| Doi | https://doi.org/10.1016/j.jpaa.2020.106519 |
| Klíčová slova | Accessible category; 2-category; Pseudomorphism |
| Popis | Categorical structures and their pseudomaps rarely form locally presentable 2-categories in the sense of Cat-enriched category theory. However, we show that if the categorical structure in question is sufficiently weak (such as the structure of monoidal, but not strict monoidal, categories) then the 2-category in question is accessible. Furthermore, we explore the flexible limits that such 2-categories possess and their interaction with filtered colimits. |
| Související projekty: |