SiLi Index: Data Structure for Fast Vector Space Searching
| Autoři | |
|---|---|
| Rok publikování | 2019 |
| Druh | Článek ve sborníku |
| Konference | Proceedings of the Thirteenth Workshop on Recent Advances in Slavonic Natural Languages Processing, RASLAN 2019 |
| Fakulta / Pracoviště MU | |
| Citace | |
| www | https://nlp.fi.muni.cz/raslan/2019/paper07-herman.pdf |
| Klíčová slova | word embeddings; vector space; semantic similarity |
| Popis | Nearest neighbor queries in high-dimensional spaces are ex-pensive. In this article, we propose a method of building and querying astand-alone data structure, SiLi (SimilarityList) Index, which supports ap-proximating the results of k-NN queries in high-dimensional spaces, whileusing a significantly reduced amount of system memory and processortime compared to the usual brute-force search methods. |
| Související projekty: |