Improving Orienteering-based Tourist Trip Planning with Social Sensing

Publikace nespadá pod Ústav výpočetní techniky, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.

Autoři

PERSIA Fabio PILATO Giovanni GE Mouzhi BOLZONI Paolo D'AURIA Daniela SVEN Helmer

Rok publikování 2020
Druh Článek v odborném periodiku
Časopis / Zdroj Future Generation Computer Systems
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www http://dx.doi.org/10.1016/j.future.2019.10.028
Doi http://dx.doi.org/10.1016/j.future.2019.10.028
Klíčová slova Social sensing;Orienteering;Semantic mapping;Semantic similarity
Popis We enhance a tourist trip planning framework based on orienteering with category constraints by adding social sensing. This allows us to customize a user’s experience without putting the burden of preference elicitation on the user. We identify the interests of a user by analyzing their Tweets and then match these interests to descriptions of points of interests. For this analysis we adapt different schemes for social sensing to the needs of our orienteering context and compare them to find the most suitable approach. We show that our technique is fast enough for use in real-time dynamic settings and also has a higher accuracy compared to previous approaches. Additionally, we integrate a more efficient algorithm for solving the orienteering problem, boosting the overall performance and utility of our framework further, as demonstrated by the positive user satisfaction received by real users.