Algorithmic Solvability of the Lifting Extension Problem
| Autoři | |
|---|---|
| Rok publikování | 2017 |
| Druh | Článek v odborném periodiku |
| Časopis / Zdroj | Discrete & Computational Geometry |
| Fakulta / Pracoviště MU | |
| Citace | |
| www | https://link.springer.com/article/10.1007%2Fs00454-016-9855-6 |
| Doi | https://doi.org/10.1007/s00454-016-9855-6 |
| Obor | Obecná matematika |
| Klíčová slova | homotopy classes ; equivariant ; fibrewise ; lifting-extension problem ; algorithmic computation; embeddability; Moore-Postnikov tower |
| Popis | Let X and Y be finite simplicial sets, both equipped with a free simplicial action of a finite group. Assuming that Y is d-connected and dimX less orequal to 2d, we provide an algorithm that computes the set of all equivariant homotopy classes of equivariant continuous maps between geometric realizations of X and Y. This yields the first algorithm for deciding topological embeddability of a k-dimensional finite simplicial complex into n-dimensional Euclidean space under certain conditions on k and n. |
| Související projekty: |