Maximizing the Efficiency of Multi-enzyme Process by Stoichiometry Optimization.
| Autoři | |
|---|---|
| Rok publikování | 2014 |
| Druh | Článek v odborném periodiku |
| Časopis / Zdroj | ChemBioChem |
| Fakulta / Pracoviště MU | |
| Citace | |
| Doi | https://doi.org/10.1002/cbic.201402265 |
| Obor | Biochemie |
| Klíčová slova | biocatalysis; engineered enzymes |
| Popis | Multi-enzyme processes represent an important area of biocatalysis. Their efficiency can be enhanced by optimization of biocatalysts’ stoichiometry. Here we present a workflow for maximizing the efficiency of a three-enzyme system catalysing a five-step chemical conversion. Kinetic models of pathways featuring either wild-type or engineered enzymes were built and the enzyme stoichiometry of each pathway was optimized. Mathematical modelling and one-pot multi-enzyme laboratory experiments provided detailed insights into pathway dynamics, enabled the selection of suitable engineered enzyme and afforded high efficiency while minimizing biocatalyst loadings. The optimizing of stoichiometry in a pathway with engineered enzyme reduced the total biocatalyst load by an impressive 56 %. Our new workflow represents a broadly applicable strategy for optimizing multi-enzyme processes. |
| Související projekty: |