Computing the Stretch of an Embedded Graph
| Název česky | Výpočet roztažení nakresleného grafu | 
|---|---|
| Autoři | |
| Rok publikování | 2013 | 
| Druh | Článek ve sborníku | 
| Konference | XV Spanish Meeting on Computational Geometry | 
| Fakulta / Pracoviště MU | |
| Citace | |
| www | sbornik | 
| Obor | Obecná matematika | 
| Popis | We provide two algorithms to compute the stretch of an embedded graph, each based on a different principle. The first algorithm is based on surgery and computes the stretch in time $O(g^4 n \log n)$ with high probability, or in time $O(g^4 n \log^2 n)$ in the worst case, where $g$ is the genus of the surface $\Sigma$ and $n$ is the number of vertices in $G$. The second algorithm is based on using a short homology basis and computes the stretch in time $O(n^2\log n + n^2g + ng^3)$. | 
| Související projekty: |