On Bilinear Forms from the Point of View of Generalized Effect Algebras
| Autoři | |
|---|---|
| Rok publikování | 2013 |
| Druh | Článek v odborném periodiku |
| Časopis / Zdroj | Foundations of Physics |
| Fakulta / Pracoviště MU | |
| Citace | |
| www | http://link.springer.com/article/10.1007%2Fs10701-013-9736-2 |
| Doi | https://doi.org/10.1007/s10701-013-9736-2 |
| Obor | Obecná matematika |
| Klíčová slova | Effect algebra; generalized effect algebra; Hilbert space; operator; unbounded operator; bilinear form; singular bilinear form; regular bilinear form; monotone convergence |
| Popis | We study positive bilinear forms on a Hilbert space which are neither not necessarily bounded nor induced by some positive operator. We show when different families of bilinear forms can be described as a generalized effect algebra. In addition, we present families which are or are not monotone downwards (Dedekind upwards) $\sigma$-complete generalized effect algebras. |
| Související projekty: |