Extensions of Ordering Sets of States from Effect Algebras onto Their MacNeille Completions
| Autoři | |
|---|---|
| Rok publikování | 2013 |
| Druh | Článek v odborném periodiku |
| Časopis / Zdroj | International Journal of Theoretical Physics |
| Fakulta / Pracoviště MU | |
| Citace | |
| www | http://link.springer.com/article/10.1007%2Fs10773-013-1532-4 |
| Doi | https://doi.org/10.1007/s10773-013-1532-4 |
| Obor | Obecná matematika |
| Klíčová slova | Effect algebra MV-effect algebrMacNeille completion;Positive linear operators in Hilbert space;Hilbert space effect-representation |
| Popis | In "Riečanová Z, Zajac M.: Hilbert Space Effect-Representations of Effect Algebras" it was shown that an effect algebra $E$ with an ordering set ${\cal M}$ of states can by embedded into a Hilbert space effect algebra ${\cal E}(l_2({\cal M}))$. We consider the problem when its effect algebraic MacNeille completion $\hat{E}$ can be also embedded into the same Hilbert space effect algebra ${\cal E}(l_2({\cal M}))$. That is when the ordering set $\cal M$ of states on $E$ can be be extended to an ordering set of states on $\hat{E}$. We give an answer for all Archimedean MV-effect algebras and Archimedean atomic lattice effect algebras. |
| Související projekty: |