Triple Representation Theorem for homogeneous effect algebras
| Autoři | |
|---|---|
| Rok publikování | 2012 |
| Druh | Článek ve sborníku |
| Konference | 2012 42ND IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL) |
| Fakulta / Pracoviště MU | |
| Citace | |
| www | http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6214831 |
| Doi | https://doi.org/10.1109/ISMVL.2012.27 |
| Obor | Obecná matematika |
| Klíčová slova | Homogeneous effect algebra; TRT-effect algebra; orthocomplete effect algebra; lattice effect algebra; MV-algebra; block; center; atom; sharp element; meager element; sharply dominating effect algebra |
| Přiložené soubory | |
| Popis | The aim of our paper is to prove the Triple Representation Theorem, which was established by Jenca in the setting of complete lattice effect algebras, for a special class of homogeneous effect algebras, namely TRT-effect algebras. This class includes complete lattice effect algebras, sharply dominating Archimedean atomic lattice effect algebras and homogeneous orthocomplete effect algebras. |
| Související projekty: |