Tropomyosin isoforms encoded by TPM2 control the actin-bundling activity of fascin-1

Investor logo

Warning

This publication doesn't include Institute of Computer Science. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

SIATKOWSKA Malgorzata ROBASZKIEWICZ Katarzyna ROUSOVÁ Andrea NAVRÁTIL Jiří KNOPFOVÁ Lucia TALIAN Gabor BENEŠ Petr MORACZEWSKA Joanna

Year of publication 2025
Type Article in Periodical
Magazine / Source BIOLOGICAL RESEARCH
MU Faculty or unit

Faculty of Science

Citation
web https://biolres.biomedcentral.com/articles/10.1186/s40659-025-00640-3
Doi https://doi.org/10.1186/s40659-025-00640-3
Keywords Fascin-1; TPM2; Tropomyosin; Isoforms; Actin; Bundling
Attached files
Description BackgroundIn many types of tumors, the expression patterns of actin-binding proteins -fascin-1 and various isoforms of tropomyosin - are altered. Fascin-1 is an actin-bundling protein that promotes cancer cell motility, whereas tropomyosin functions as a tumor and metastasis suppressor. However, the mechanisms by which tropomyosin isoforms regulate fascin-1 remain poorly understood. This study aimed to investigate the reciprocal effects of fascin-1 and tropomyosin isoforms on their interactions with actin and on the formation of actin bundles.MethodsRecombinant fascin-1 and the cytoskeletal tropomyosin isoforms encoded by TPM2 (Tpm2.1, Tpm2.3, and Tpm2.4) were expressed in BL21-DE3 cells and purified. High-speed centrifugation was employed to assess the actin affinities of fascin-1 and the Tpm2 isoforms. Actin filament bundling was analyzed using low-speed centrifugation and fluorescence microscopy. A pull-down assay was performed to examine direct interactions between fascin-1 and the Tpm2 isoforms. Confocal microscopy was used to analyze the localization of fascin-1 in the metastatic SAOS-2 LM5 cell line overexpressing Tpm2 isoforms.ResultsAmong the three recombinant, acetylated Tpm2 isoforms, Tpm2.4 exhibited the highest affinity for F-actin. All Tpm2 isoforms strongly inhibited fascin-1-mediated actin bundling at low fascin-1 concentrations, with bundling restored only at substantially higher fascin-1 levels. The resulting actin bundles contained both Tpm2 and fascin-1; however, the number of filaments per bundle was reduced in the presence of any Tpm2 isoform. Fascin-1's affinity for actin was decreased in the presence of Tpm2 isoforms, and increased Tpm2 occupancy on actin filaments partially displaced fascin-1. In contrast, fascin-1 binding did not affect the affinity of Tpm2 isoforms for actin. Pull-down assays revealed that Tpm2 isoforms can directly interact with fascin-1, with Tpm2.4 showing the highest affinity. The inhibitory effect of Tpm2 on fascin-1-actin interactions was further supported by cellular data, which showed that overexpression of cytoplasmic Tpm2.1, Tpm2.3, or Tpm2.4 in SAOS-2 LM5 cells reduced fascin co-localization with actin.ConclusionCytoplasmic Tpm2 isoforms regulate actin bundling activity of fascin-1 by organizing protein composition in the bundles, a mechanism that may contribute to the suppression of metastatic phenotype in cancer cells.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info