Biomarker responses in wild brown trout from a headwater stream and their causal link to water pollution assessed through chemical analysis and<i> in</i><i> vitro</i> reporter gene bioassays

Warning

This publication doesn't include Institute of Computer Science. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

KOUBOVÁ Anna TOUŠOVÁ Zuzana SAUER Pavel DE SALES-RIBEIRO Carolina VRANA Branislav SMUTNÁ Marie KROUPOVA Hana Kocour GRABICOVA Katerina SCHMIDT-POSTHAUS Heike RANDÁK Tomáš GRABIC Roman HILSCHEROVÁ Klára ŽLÁBEK Vladimír

Year of publication 2025
Type Article in Periodical
Magazine / Source Journal of Hazardous Materials
MU Faculty or unit

Faculty of Science

Citation
web https://www.sciencedirect.com/science/article/pii/S0304389425013482?via%3Dihub
Doi http://dx.doi.org/10.1016/j.jhazmat.2025.138433
Keywords Antioxidant enzymes; Cytochrome P450; Histology; Micropollutant; Passive sampler
Description Improving our understanding of how environmental pollution affects aquatic life requires a holistic approach. This study provides new insights into the intrinsic biological defence of brown trout (Salmo trutta m. fario L.) against chemical pollution in a stream with a low-dilution factor, a common scenario in headwaters globally. Fish restocked downstream of a sewage treatment plant (STP) were compared with a control group upstream of STP. Trout tissues were sampled after 6, 14, and 24 weeks and subjected to biochemical and histological analyses. Passive samplers were deployed at both stream stretches to reflect concentrations of freely dissolved organic micropollutants and their bioactivity effects using in vitro reporter gene bioassays. Chemical analysis downstream revealed elevated concentrations of micropollutants compared to upstream. In vitro bioassays detected increased androgenicity, estrogenicity, and transthyretin-binding inhibition. Antioxidant and biotransformation enzyme activities in fish indicated gradual acclimation to pollution despite minor histopathological changes. Elevated vitellogenin and 17 beta-estradiol in males suggested pollution-induced endocrine disruption. Although the results obtained from water chemical profiling and bioassays have a causal relationship to fish health, trout's molecular defence system allowed gradual acclimation to pollution, mitigating broader ecological impacts. The study advanced the knowledge of how fish cope with wastewater-borne micropollutants in aquatic environments. vitellogenin and 17 beta-estradiol in males suggested pollution-induced endocrine disruption. Although the results obtained from water chemical profiling and bioassays have a causal relationship to fish health, trout's molecular defence system allowed gradual acclimation to pollution, mitigating broader ecological impacts. The study advanced the knowledge of how fish cope with wastewater-borne micropollutants in aquatic environments.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info