Free Energy of Membrane Pore Formation and Stability from Molecular Dynamics Simulations

Investor logo
Investor logo
Investor logo

Warning

This publication doesn't include Institute of Computer Science. It includes Central European Institute of Technology. Official publication website can be found on muni.cz.
Authors

RIVEL Timothée Emmanuel Jonathan BIRIUKOV Denys KABELKA Ivo VÁCHA Robert

Year of publication 2025
Type Article in Periodical
Magazine / Source Journal of Chemical Information and Modeling
MU Faculty or unit

Central European Institute of Technology

Citation
web https://pubs.acs.org/doi/10.1021/acs.jcim.4c01960
Doi http://dx.doi.org/10.1021/acs.jcim.4c01960
Keywords PARTICLE MESH EWALD; BAX-DERIVED PEPTIDE; FORCE-FIELD; LIPID-MEMBRANES; ANTIMICROBIAL PEPTIDES; LINE TENSION; REACTION COORDINATE; VALIDATION; BILAYER; ENERGETICS
Attached files
Description Understanding the molecular mechanisms of pore formation is crucial for elucidating fundamental biological processes and developing therapeutic strategies, such as the design of drug delivery systems and antimicrobial agents. Although experimental methods can provide valuable information, they often lack the temporal and spatial resolution necessary to fully capture the dynamic stages of pore formation. In this study, we present two novel collective variables (CVs) designed to characterize membrane pore behavior, particularly its energetics, through molecular dynamics (MD) simulations. The first CV-termed Full-Path-effectively tracks both the nucleation and expansion phases of pore formation. The second CV-called Rapid-is tailored to accurately assess pore expansion in the limit of large pores, providing quick and reliable method for evaluating membrane line tension under various conditions. Our results clearly demonstrate that the line tension predictions from both our CVs are in excellent agreement. Moreover, these predictions align qualitatively with available experimental data. Specifically, they reflect higher line tension of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS) lipids compared to pure POPC, the decrease in line tension of POPC vesicles as the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) content increases, and higher line tension when ionic concentration is increased. Notably, these experimental trends are accurately captured only by the all-atom CHARMM36 and prosECCo75 force fields. In contrast, the all-atom Slipids force field, along with the coarse-grained Martini 2.2, Martini 2.2 polarizable, and Martini 3 models, show varying degrees of agreement with experiments. Our developed CVs can be adapted to various MD simulation engines for studying pore formation, with potential implications in membrane biophysics. They are also applicable to simulations involving external agents, offering an efficient alternative to existing methodologies.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info