Impact of antiphase boundaries on structural, magnetic and vibrational properties of Fe3Al


This publication doesn't include Institute of Computer Science. It includes Faculty of Science. Official publication website can be found on


FRIÁK Martin ČERNÝ Miroslav VŠIANSKÁ Monika ŠOB Mojmír

Year of publication 2021
Type Conference abstract
MU Faculty or unit

Faculty of Science

Description Antiphase boundaries (APBs) are rather common extended defects appearing in crystals with ordered sublattices. They are formed when one part of a crystal is specifically shifted with respect to the other part. Our computational study focuses on APBs in Fe3Al, which belongs to a very promising class of Fe-Al-based materials [1,2]. Regarding APBs in iron aluminides, two types of APBs were experimentally found in the D03 superlattice of Fe3Al. The first one is characterized by a shift of the interfacing grains in the <100> direction by a half of the lattice parameter defined for a 16-atom cube-shaped D03 cell and is associated solely with the D03 superlattice (D03-type of APBs). The other type of APBs, that we focus on in the present study, can appear both in the D03 superlattice and in the B2 lattice (it is called a B2-type of APBs) and is characterized by a 1<111> shift. We studied the D03-APBs, which are specific to the D03 superlattice, in (i) Fe3Al with and without Cr additions [3] and (ii) Fe-Al-Ti compounds [4]. In our current research we build upon our expertise with the B2-type of APBs that we theoretically studied in Fe70Al30 alloy [5].
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info