How many (distinguishable) classes can we identify in single-particle analysis?

Autoři

LAUZIRIKA Oier PERNICA Martin HERREROS David RAMÍREZ-APORTELA Erney KRIEGER James GRAGERA Marcos ICETA Mikel CONESA Pablo FONSECA Yunior JIMÉNEZ Jorge FILIPOVIČ Jiří CARAZO Jose Maria SORZANO Carlos Oscar

Rok publikování 2025
Druh Článek v odborném periodiku
Časopis / Zdroj ACTA CRYSTALLOGRAPHICA SECTION D
Fakulta / Pracoviště MU

Ústav výpočetní techniky

Citace
www URL
Doi https://doi.org/10.1107/S2059798325007831
Klíčová slova cryo-electron microscopy; 3D classification; structural heterogeneity; statistical significance; reproducibility analysis
Popis Heterogeneity in cryoEM is essential for capturing the structural variability of macromolecules, reflecting their functional states and biological significance. However, estimating heterogeneity remains challenging due to particle mis{\-}classification and algorithmic biases, which can lead to reconstructions that blend distinct conformations or fail to resolve subtle differences. Furthermore, the low signal-to-noise ratio inherent in cryo-EM data makes it nearly impossible to detect minute structural changes, as noise often obscures subtle variations in macromolecular projections. In this paper, we investigate the use of {\it p}-values associated with the null hypothesis that the observed classification differs from a random partition of the input data set, thereby providing a statistical framework for determining the number of distinguishable classes present in a given data set.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info