

Central European Institute of Technology BRNO | CZECH REPUBLIC

Návrhy nových léčiv s použitím výpočetních nástrojů

Jaroslav Koča CEITEC and NCBR, Fac Sci, Masaryk University

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

OP Research and Development for Innovation

Computational chemistry group at CEITEC/NCBR

Protein/carbohydrate interaction with various techniques (docking, QM, TI, ...)

Reaction mechanism of enzymatic reactions using QM/MM molecular dynamics

Structural bioinformatics (Radka Svobodová)

"Classical" bioinformatics (Crina Maria Ionescu)

Tuberculosis come back !

Carbohydrate-active enzymes – Mycobacterial glycosyl transferases

Thick, hydrophobic cell wall \Rightarrow resistance of *Mycobacterium* against desinfectants, antibiotics,

 1.3 million deaths caused by dehydration. Supports the survival in tuberculosis in 2012, 1.8 million deaths the macrophages. in 2015 (out of 10.4 million cases)

multidrug-resistance (MDR)

<u>Arabinogalactan</u> Synthetised by complex of glycosyltransferases. Atractive target for drug design. 3

Enzymatic reaction

Enzyme inhibition

Transition State Analogue Inhibitors (TSAI)

Why Transition State Analogue Inhibitors (TSAI) ?

Plus:

Much lower amount/dose needed (could be like 1,000,000 (or even more) lower)

Minus:

Difficult to obtain TS structure Works only for enzymes

For TSAI see, for example, a paper "Freezing Time" by Vern L. Schramm (Scientist 26 (5), 30-35, May 1, 2012)

Chemical and Biological Background

 Glycosyltransferases - catalyze the transfer of saccharide from activated nucleotide sugar to nucleophilic glycosyl acceptor molecule

- Glycoconjugates:
 - one of the fundamental biopolymers found in cells
 - Glycoproteins, glycolipids, ...
 - involved in cell–cell interactions, signaling, folding, pathogenesis, bacterial cell wall formation, ...

Zaia, Joseph. "At Last, Functional Glycomics." Nat Meth 8, 1. 2011.

Enzyme: ~4,300 atoms Water: ~42,000 atoms Total: ~46,500 atoms

Beyond any QM method!

How to Study Mechanisms of Enzymatic Reactions

•MD based methods (CPMD and others)

- Proper statistical sampling of states (in theory)
- Extremely computationally demanding, hard to reach converged results

Analysis of the Potential Energy Surface

- Overview of the whole energetic landscape
- Selecting suitable scan coordinates is absolutely crucial, errors hard to detect

•Optimization of Minimum Energy Reaction Paths

- Guaranteed continuous smooth reaction path
- Impossible to tell if the path is physically relevant

Results

STM free energy profiles of β -(1-6) and β -(1-5) reactions.

MTD free energy surface of β -(1-6) reaction.

Average transition state structures and the electrostatic potential from STM.

Reactive Molecular Dynamics

- Ordinary QM/MM calculation is very time consuming !!!
- Ordinary MM models (force fields) cannot handle reactions
 - Predefined bonding topology
- **ReaxFF** reactive force field:
 - Determines bonds on the fly
 - Able to handle diverse systems (explosives, hydrocarbons, geochemistry, catalysis etc.)
- Suitable parameter set for enzymes missing

Parametrizing ReaxFF

- Hundreds of empirical parameters need to be tuned
 - Strong dependencies between parameters – simultaneous optimization necessary
 - State-of-the-art numerical optimization algorithm (VD-CMA-ES)
- Training set: over 7600 geometries
 of 31 small model molecules
 - Reference data calculated using accurate QM (M06-2X)
 - Fully automated generation by perturbing bonds lengths, valence and torsion angles

Summary

- Parameters of the ReaxFF models optimized for enzymatic reactivity
 - Advanced numerical optimizer
 - Automated generation of the training set with QM data
- Real-life performance compared with QM/MM on ppGalNAcT2 glycosyltransferase
 - Qualitative match
 - ReaxFF is a million times faster !

(i.e. 1hr compared to 114 years)

Published in J. Chem. Theory and Computation

Central European Institute of Technology c/o Masaryk University, Žerotínovo nám. 9 601 77 Brno, Czech Republic

www.ceitec.eu | info@ceitec.cz