

Annex No. 10 to the MU Directive on Habilitation Procedures and Professor Appointment
Procedures

HABILITATION THESIS REVIEWER'S REPORT

Masaryk University
Applicant Jiří Filipovič, PhD
Habilitation thesis Software Performance Optimization in Scientific

Computing
Reviewer Anton Wijs, PhD
Reviewer's home unit,
institution

Parallel Software Development group, Software
Engineering & Technology, Faculty of Mathematics and
Computer Science, Eindhoven University of
Technology

This habilitation thesis presents an impressive body of work on the topic of Software
Performance Optimization, with a considerable scope. The applicant has acted as first author
in the vast majority of the included papers, and as principal investigator in six of those
papers, most of them addressing the autotuning part of the work. In the first part, there are
contributions on the algorithmic level, with a particular application in computational biology,
and various GPU accelerations of methods from computational chemistry and cryo-electron
microscopy, addressing molecular docking, computation of dRMSD, movie alignment and 3D
refinement. This resulted in a number of high performance tools.

Besides this, there is considerable work on kernel fusion and autotuning for CPU, GPU and
Xeon Phi. The work on kernel fusion addresses both data-independent and data-dependent
kernel fusion, with the former involving both serial and parallel fusion. Regarding data-
dependent kernel fusion, kernels are targeted without cross-thread block dependencies, as
those dependencies would require global synchronisation barriers, which are only provided
in-between kernel launches. Furthermore, the fusion of kernels that perform map, reduce, or
nested combinations thereof are discussed. The contribution here is that the first-order
function executed by the map or reduce is allowed to be parallel. The compiler developed by
the applicant and co-authors is thoroughly experimentally evaluated. Finally, the Kernel
Tuning Toolkit is presented, to automate inter-kernel optimization and dynamic autotuning.
Addressing inter-kernel optimization is novel, as comparable tools completely focus on the
autotuning of individual kernels. Dynamic autotuning is supported, allowing a piece of
software to tune itself when executed on different hardware. In addition, it uses a portable
model involving performance counters, which allows the computation of a model on a
particular GPU, and using the gained information to speed up the autotuning of the software
when running on a different GPU or when processing different input.

On a more critical note, whereas the individual chapters provide impressive results, any
connections between these chapters are not made explicit. This makes the thesis more a
collection of published papers than a single body of work with one clear research vision. This
is not per se bad, but I would have enjoyed reading about how the methods of the various
chapters possibly relate to each other, and reading more about the vision of the applicant for
the future. My questions below therefore address these points, and some others, in detail.

2

Reviewer's questions for the habilitation thesis defence (number of questions up to the
reviewer)

1. The thesis contains contributions on various approaches to software performance
optimization: changing the mathematical formulation of the involved model, optimizing
source code, and (possibly automatically) accelerating implementations on GPUs.
Taking a step back, can you explain how to go about improving the performance of a
piece of scientific computing software in general? Which of these techniques should
be tried first, and why? In other words, how and in which order should one try to apply
these methods?

2. A specific question related to a comment made on page 13, last paragraph: You
mention that you mainly focussed on the design of the surgical simulators. Can you
elaborate on why specifically this was focussed on? As you mention, the
mathematical model is computationally demanding, but is it also particularly
amenable to parallelisation? If so, why?

3. A comment: Figure 2.5 seems to be missing.
4. On page 30, paragraph 2, a remark is made regarding Table 4.3 that often the

performance is close to the theoretical peak. However, for the K20, E5-2650 and
5110P this seems not to be the case at all. Can you elaborate on that, and give a
reason for these numbers?

5. On page 31, it is mentioned that we can see in Table 4.4 that the performance
penalty of dynamic tuning is smaller than the performance penalty obtained when
code is used that was tuned offline for different hardware. It is not clear to me how we
can see that. Can you explain how to do this?

6. I have two specific questions about the paper “Optimizing CUDA code by kernel
fusion: application on BLAS”, page 3941. First of all, it is remarked that data
exchanged between f and g cannot be placed in registers. Does this not entirely
depend on how the threads are mapped on the data for f and g individually?
Furthermore, intra-warp sharing of register data can also play a role here to use the
output of f as input for g within warps. Can you comment on that?

7. Secondly, it is remarked on the same page that functions with different nesting depths
are not fused, as this yields redundant execution of functions with lower nesting
depth. I do not see why that is the case. Are the functions not executed in sequence
then?

8. The second half of the thesis addresses automatic kernel fusion and autotuning,
while the first half is about improving the performance of particular computations from
various fields. I wonder if the techniques developed in the second half are applicable
on the computations of the first half, and whether this has been tried. Would these
techniques result in further improvements, or are they not (completely) applicable,
and why (not)?

9. High performance computing still requires expert knowledge about targeted hardware
platforms. Do you see this changing in the future, and how? Will your research
contribute to that, and to what extent? If not, or not completely, are there fundamental
limitations, or is it just a matter of time before that has changed?

10. Maybe as a continuation of the previous question(s), with the prominent rise of AI,
how will, in your view, AI affect High Performance Computing? Will it play a role in
your future research, and if so, how?

11. Finally, what is your longterm vision for your research? Do you have a point on the
horizon, or moonshot challenge, to strive towards, and if so, what is it?

3

Conclusion

The habilitation thesis entitled Software Performance Optimization in Scientific Computing by
Jiří Filipovič fulfils requirements expected of a habilitation thesis in the field of Computer
Science.

Date: Signature:

30/03/2024

