
typeset with ConTEXt

Portable and Efficient Replacement for Web Services Messaging Protocol
∗Institute of Computer Science

Masaryk University Brno
Botanická 68a, Brno 602 00

Czech Republic

Onďrej Kraj́ıček∗

krajicek@ics.muni.cz
Petr Holub+∗

hopet@ics.muni.cz

+CESNET z. s. p. o.
Zikova 4, 160 00 Praha 6

Czech Republic

Motivation
Uses for distributed applications emerge in all areas of computing today. However, complexity of
existing distributed systems has been preventing their wide adoption. Web Services technology
aims to offer simple and portable solution for building distributed applications.

XML Web Services Technology
XML Web Services technology comprises standards, which cover the main aspects of service
oriented application architecture and service invocation:

• description of service interface and bindings: WSDL
• data encoding and serialisation: XML Schema
• encoding data into messages and message transmission: SOAP
• service discovery and integration: UDDI

Due to the XML background of these technologies, several drawbacks are imposed, which may
not be obvious for the first sight and yet they may be an issue in certain environments:

• problem 1 (data presentation problem): with textual protocol, the data must be converted
from their internal representation (not necessarily arbitrary) into its textual representation.

• problem 2 (messaging overhead problem): with XML-based protocol, the message must be
constructed as valid XML document imposing unnecessary overhead.

• problem 3 (transmission overhead problem): the message must be transmitted as a whole
(i.e. fully constructed in the memory) due to the nature of the transport protocol.

• problem 4 (stateless communication model): the communication model of XML Web Ser-
vices is stateless. For applications requiring stateful communication, the state is encoded in
every message transmitted or stored explicitly by both communicating partners.

• problem 5 (one-way communication model): the communication stemming from web service
invocation is always client initiated.

Near-Real World Example
Thermometer service represents a simple agent which implements temperature monitoring in a

temperature-sensitive environment. A method implementing the service could have the following
prototype:
float[] GetTemperature (int id, DateTime from, DateTime to);

Invocation of our example service may result in this SOAP response (truncated):

<?xml version="1.0" encoding="utf-8" ?>

<ArrayOfFloat xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://tempuri.org/">

<float>16.4567432</float>

<float>36.21009</float>

...

<float>33.59396</float>

</ArrayOfFloat>

Each representing one temperature measurement. Binary encoded, the example response con-
taining one thousand elements could be approx. 4 kB in size (each float taking 4 bytes). SOAP
message that contains essentially the same data is in this case more than ten times larger.

Problem Overview
Bandwidth consumption is one of the most painful problems of XML Web Services in environ-
ments where bandwidth is limited or expensive. However, in processing-intensive applications
(GRID computing, High-Performance Computing) processing resources (CPU, memory) con-
sumption may be even more significant.

Due to the XML nature of the SOAP protocol, unnecessary data serialisation and messaging
overhead are imposed. Data must be serialised into its textual representation, the message must
be constructed as a whole in memory and transmitted at once. With SOAP, these drawbacks
seem unavoidable, at least without introducing binary extensions and breaking some of the
fundamental principles of XML and related technologies.

GSIP – Generic Service Invocation Protocol

Instead of building performance-enhancing extensions for the
SOAP protocol, GSIP protocol takes completely different ap-
proach. It is new, alternative messaging protocol for XML Web
Services, which is, unlike SOAP, binary in its nature.

GSIP Architecture
Following figure shows layered Web Service architecture com-
paring SOAP and GSIP protocols.

IP

Web Service Application

WSDL bindings

SOAP

HTTP, HTTP[SG],...

TCP

IP

Web Service Application

WSDL bindings

GSIP

HTTP[SG]*,...

TCP
TCP UDP

WSDL Bindings layer provides transparent proxy interface and
binding and serialisation stub which implements remote invo-
cation of Web Service. Binding and serialisation stubs are gen-
erated from WSDL service specification (contract) by a stub
generator. Bindings layer introduces a notion of data units
– atomic chunks of serialised data, which are packaged and
transmitted across the wire to the other communication end-
point.

GSIP Protocol layer consists of two parts: messaging and
channels. Messaging part encapsulates data units into mes-
sages for transmission and decodes data units from received
messages. Channels provide transparent interface to the trans-
port protocols with notion of transport channels. Transport
channels are characterised by certain properties (reliability,
blocking operation, quality of service) and are provided by the
protocol implementation based on policies specified by the WS-
DL contract (policy definition extensions for WSDL need to be
created).

GSIP Stubs and Stub Generators
GSIP invocation stub (or just “stub”) consists of three parts:

the binding stub, the serialisation stub (the two are generat-
ed automagically using the WSDL contract) and the skeleton,
which implements functionality common to all stubs.

Binding stub
Binding stub publishes call-level client/server interface and im-
plements the remote invocation functionality. Binding stub
serialises data and packages them into data units using seriali-
sation stub, and passes them to messaging implementation for
further processing.

Binding stub implements:

• Data serialisation using the serialisation stub
• Policy creation and handling used to configure the un-

derlying messaging and channels. Policies are declared in
WSDL contract.

• Data mapping which maps data structures into data units.

Serialisation stub
Serialisation stub implements data serialisation. Data mapping
is a process which maps serialised data into data units. Da-
ta mapping is controlled by policies, which may be specified
(instantiated) by the binding stub.

Serialisation stub is fundamentally ASN.1 parser. Type nota-
tion for the parser is automatically created by the stub genera-
tor from the WSDL contract. This process is essentially map-
ping XML Schema to ASN.1 schema (XML Schema mapping is
defined in ITU-T X.694). The stub generator also creates data
structure declaration for the target programming language.

Problems addressed by GSIP
GSIP addresses the abovementionted problems with XML Web
Services. Short overview of solutions for problems mentioned
above is given hereby:

• solution 1 (data presentation problem): GSIP is a
binary protocol, data are encoded using ASN.1 En-
coding Rules which impose significantly smaller over-
head than textual encoding (for performance com-

parison of ASN.1 binary and textual encoding see
http://www.asn1.org/benchmark/).

• solution 2 (messaging overhead problem): with GSIP, mes-
sage is constructed using data units. Message itself contains
no explicit header while data and meta-data are all carried
within the data units.

• solution 3 (transmission overhead problem): the stub may
begin message transmission when at least one data unit is
available. Data that has to be transmitted may be seri-
alised as more than one data unit, i. e. multiple messages
may (but need not) be used for data transmission. The
messaging behavior depends heavily on protocol implemen-
tation and involved policies.

• solution 4 (stateless communication model): the channels
layer, which encapsulates messaging transport and commu-
nication, may provide means for keep-alive communication.
The communication state may be embedded within channel
instance and transparently bound to each message as data
unit.

• solution 5 (one-way communication model): more sophis-
ticated messaging models may be easily implemented (mes-
sage push model, publisher-subscriber model).

References
• Kenneth Chiu, Madhusudhan Govindaraju, Randall Bramley, Investigat-

ing the Limits of SOAP Performance for Scientific Computing, Proceed-
ings of The Eleventh International Symposium on High Performance
Distributed Computing, IEEE Computer Society Press, pp. 246-254,
Edinburgh, Scotland, 23-26 July, 2002.

• Paul Sandoz, Santiago Pericas-Geertsen, Kohuske Kawaguchi, Marc
Hadley, and Eduardo Pelegri-Llopart, Fast Web Services, Sun Microsys-
tems, August 2003
http://developer.java.sun.com/developer/
technicalArticles/WebServices/fastWS/

Motto:
Web Services have layers.
Ogres have layers.
Ogres are like Web Services.
Everybody likes Web Services.
I don’t care what everybody likes. . .


